Close Menu
Web StatWeb Stat
  • Home
  • News
  • United Kingdom
  • Misinformation
  • Disinformation
  • AI Fake News
  • False News
  • Guides
Trending

From ATM closures to downed Sukhoi: Govt's fact-check team busts flood of Pakistani misinformation – Fortune India

May 9, 2025

2 more vloggers in Davao face ‘disinformation’ complaints

May 9, 2025

India-Pakistan conflict: PIB debunks seven instances of misinformation amid heightened tension; what it revealed

May 9, 2025
Facebook X (Twitter) Instagram
Web StatWeb Stat
  • Home
  • News
  • United Kingdom
  • Misinformation
  • Disinformation
  • AI Fake News
  • False News
  • Guides
Subscribe
Web StatWeb Stat
Home»Misinformation
Misinformation

Large Language Models Vulnerable to Medical Misinformation through Poisoned Datasets

News RoomBy News RoomJanuary 11, 20253 Mins Read
Facebook Twitter Pinterest WhatsApp Telegram Email LinkedIn Tumblr

AI’s Achilles’ Heel: Medical Misinformation and the Vulnerability of Large Language Models

The rise of large language models (LLMs) like ChatGPT has heralded a new era of information access, offering the potential to revolutionize fields like healthcare. However, a recent study by researchers at NYU Langone Health, published in Nature Medicine, reveals a critical vulnerability in these powerful tools: their susceptibility to "data poisoning," where the inclusion of even small amounts of misinformation in training data can significantly skew LLM outputs, potentially leading to the dissemination of harmful medical advice.

The NYU Langone team conducted a controlled experiment to assess the impact of data poisoning on LLMs used in a medical context. They employed ChatGPT to generate a staggering 150,000 fabricated medical documents containing inaccurate, outdated, or entirely false information. These tainted documents were then strategically inserted into a test version of a medical training dataset used to train several LLMs. Subsequently, the researchers posed 5,400 medical queries to the trained LLMs and had the responses evaluated by human medical experts.

The results were alarming. The introduction of even a minuscule 0.5% of poisoned data into the training dataset resulted in a noticeable increase in medically inaccurate answers across all tested LLMs. Examples included the false assertion that the effectiveness of COVID-19 vaccines remained unproven and misidentification of the purposes of common medications. Even more concerning, reducing the tainted data to a mere 0.01% of the dataset still resulted in 10% of LLM responses containing misinformation. A further reduction to 0.001% still yielded a 7% error rate. This highlights the extreme sensitivity of LLMs to even trace amounts of misinformation, suggesting that even a few strategically placed false articles on prominent websites could significantly impact the accuracy of LLM-generated medical advice.

This vulnerability raises serious concerns about the reliability of LLMs, particularly in critical domains like healthcare, where misinformation can have dire consequences. The study’s findings underscore the urgent need for robust mechanisms to detect and mitigate the effects of data poisoning. While the researchers developed an algorithm to identify and cross-reference medical data within LLMs, they acknowledge the immense challenge of effectively purging misinformation from vast public datasets used to train these models.

The implications of this research extend far beyond the medical field. As LLMs are increasingly integrated into various aspects of our lives, from education and finance to legal and political discourse, the potential for malicious actors to manipulate these systems through data poisoning poses a significant societal threat. The ease with which misinformation can be injected and amplified by LLMs underscores the need for greater vigilance in data curation, model training, and output verification.

The challenge lies in the sheer scale and complexity of the data used to train LLMs. These models often ingest massive amounts of information from the internet, making it practically impossible to manually vet every piece of data for accuracy. Moreover, the dynamic nature of online information, with new content constantly being generated and modified, makes maintaining the integrity of training datasets a continuous and daunting task.

Moving forward, a multi-pronged approach is crucial. This includes developing more sophisticated algorithms for identifying and filtering misinformation, enhancing transparency in data sourcing and model training processes, and fostering greater public awareness about the potential biases and limitations of LLMs. Collaboration between AI researchers, domain experts, and policymakers is essential to establish guidelines and regulations that promote responsible development and deployment of these powerful technologies. The future of LLMs depends on our ability to address these challenges effectively, ensuring that these tools are used to enhance, rather than jeopardize, human well-being and informed decision-making.

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
News Room
  • Website

Keep Reading

From ATM closures to downed Sukhoi: Govt's fact-check team busts flood of Pakistani misinformation – Fortune India

India-Pakistan conflict: PIB debunks seven instances of misinformation amid heightened tension; what it revealed

India-Pak Conflict: India thwarts Pak’s attempt to weaponise misinformation

In Mexico’s measles outbreak, Mennonites face vaccine misinformation

PIB Fact Check debunks seven instances of misinformation amid escalated tension

Trump’s team, often accused of spreading misinformation, slashes misinformation research

Editors Picks

2 more vloggers in Davao face ‘disinformation’ complaints

May 9, 2025

India-Pakistan conflict: PIB debunks seven instances of misinformation amid heightened tension; what it revealed

May 9, 2025

Explained | Pakistan’s ‘full-blown disinformation offensive’ around Operation Sindoor

May 9, 2025

Govt fact-checking unit swings into action in the wake of Operation Sindoor to highlight false claims

May 9, 2025

India’s alleged aggression, false propaganda lose global credibility: Sharmila Farooqi

May 9, 2025

Latest Articles

India-Pak Conflict: India thwarts Pak’s attempt to weaponise misinformation

May 9, 2025

Pak Launches Another Front, Targets Indian Civilians With Disinformation Attack

May 9, 2025

Pakistan Resorts to Misinformation After Indian Strikes; Public Advised to Verify & Report Fake Content –

May 9, 2025

Subscribe to News

Get the latest news and updates directly to your inbox.

Facebook X (Twitter) Pinterest TikTok Instagram
Copyright © 2025 Web Stat. All Rights Reserved.
  • Privacy Policy
  • Terms
  • Contact

Type above and press Enter to search. Press Esc to cancel.